These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 8-OH DPAT can restore the locomotor stimulant effects of cocaine blocked by haloperidol.
    Author: Carey R, Damianopoulos E, De Palma G.
    Journal: Pharmacol Biochem Behav; 2000 Aug; 66(4):863-72. PubMed ID: 10973527.
    Abstract:
    In the first experiment, separate groups of rats (n = 7) were treated with either saline, cocaine (10 mg/kg), haloperidol (0.1 mg/kg), or cocaine (10 mg/kg) plus haloperidol (0.1 mg/kg). Locomotor behavior was measured in an open-field environment, and cocaine induced a reliable locomotor stimulant effect compared to saline-treated animals. Haloperidol produced a progressive decline in locomotion over the 5 test days. Haloperidol also blocked cocaine stimulant effects compared to cocaine-treated animals. In the second experiment, five groups (n = 7) of animals were treated either with saline, cocaine (10 mg/kg), 8-OH DPAT (0.2 mg/kg), 8-OH DPAT (0.2 mg/kg) plus haloperidol (0.1 mg/kg), or 8-OH DPAT (0.2 mg/kg) plus haloperidol 0.1 mg/kg plus cocaine (10 mg/kg). Over the course of 5 days of treatment, cocaine induced a locomotor stimulant effect. Saline and 8-OH DPAT animals did not differ in terms of locomotion. The 0.1 mg/kg haloperidol plus 0.2 mg/kg 8-OH DPAT treatment decreased locomotion compared to the saline group, but the group given 0.2 mg/kg 8-OH DPAT plus 0.1 mg/kg haloperidol plus cocaine (10 mg/kg) exhibited a locomotor stimulant effect equivalent to the cocaine group. In a third experiment, it was found that the 0.2 mg/kg 8-OH DPAT treatment did not enhance the locomotor stimulant effect of cocaine. Thus, the 8-OH DPAT treatment was able to restore a cocaine locomotor stimulant effect in animals treated with haloperidol without directly enhancing the locomotor stimulant effects of cocaine. In Experiments 2 and 3, entries into the central zone of the open field were measured. Cocaine reliably increased central zone entries. The 8-OH DPAT treatment, however, selectively blocked this behavioral effect of cocaine suggesting a qualitative influence of 5-HT(1A) receptors upon cocaine, independent of locomotion activation by cocaine. Ex vivo measurements of dopamine and 5-hydroxytryptamine metabolism in limbic tissue were consistent with the established effects of cocaine, haloperidol, and 8-OH DPAT upon dopamine and 5-hydroxytryptamine neurotransmission. In addition, measurement of cocaine brain concentration indicated that neither haloperidol or 8-OH DPAT affected cocaine concentration in brain.
    [Abstract] [Full Text] [Related] [New Search]