These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Production of plasminogen activator inhibitor-1 by human mast cells and its possible role in asthma. Author: Cho SH, Tam SW, Demissie-Sanders S, Filler SA, Oh CK. Journal: J Immunol; 2000 Sep 15; 165(6):3154-61. PubMed ID: 10975829. Abstract: The plasminogen activator inhibitor type 1 (PAI-1) has an essential role in tissue remodeling. The PAI-1 gene was induced by a combination of phorbol ester and calcium ionophore at the highest level among the inducible human mast cell genes that we have analyzed on a DNA microarray. PAI-1 was secreted by both a human mast cell line (HMC)-1 and primary cultured human mast cells upon stimulation, whereas PAI-1 was undetectable in either group of unstimulated cells. The secretion of PAI-1 was due to de novo synthesis of PAI-1 rather than secretion of preformed PAI-1. The functional significance of PAI-1 secretion was demonstrated by complete inhibition of tissue-type plasminogen activator activity with supernatants of stimulated HMC-1 cells. Furthermore, we were able to regulate PAI-1 gene expression in HMC-1 cells by known therapeutic agents. High-dose (1 microM) dexamethasone induced PAI-1 mRNA expression. Cyclosporin down-regulated the expression of the PAI-1 gene. Cycloheximide abrogated PAI-1 mRNA expression, suggesting that transcription of the PAI-1 gene requires de novo synthesis of early gene products, including transcription factors. Finally, we demonstrated PAI-1 in lung mast cells from a patient with asthmatic attack by double-immunofluorescence study. This is the first report demonstrating that activated human mast cells release a striking amount of functionally active PAI-1. These results suggest that PAI-1 could play an important role in airway remodeling of asthma, and inhibition of PAI-1 activity could represent a novel therapeutic approach in the management of airway remodeling.[Abstract] [Full Text] [Related] [New Search]