These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes.
    Author: Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, Mark M.
    Journal: Development; 2000 Oct; 127(19):4277-91. PubMed ID: 10976058.
    Abstract:
    The functions of estrogen receptors (ERs) in mouse ovary and genital tracts were investigated by generating null mutants for ERalpha (ERalphaKO), ERbeta (ERbetaKO) and both ERs (ERalphabetaKO). All ERalphaKO females are sterile, whereas ERbetaKO females are either infertile or exhibit variable degrees of subfertility. Mast cells present in adult ERalphaKO and ERalphabetaKO ovaries could participate in the generation of hemorrhagic cysts. Folliculogenesis proceeds normally up to the large antral stage in both ERalphaKO and ERbetaKO adults, whereas large antral follicles of ERalpha+/-ERbetaKO and ERalphabetaKO adults are markedly deficient in granulosa cells. Similarly, prematurely developed follicles found in prepubertal ERalphaKO ovaries appear normal, but their ERalphabetaKO counterparts display only few granulosa cell layers. Upon superovulation treatment, all prepubertal ERalphaKO females form numerous preovulatory follicles of which the vast majority do not ovulate. The same treatment fails to elicit the formation of preovulatory follicles in half of the ERbetaKO mice and in all ERalpha+/-/ERbetaKO mice. These and other results reveal a functional redundancy between ERalpha and ERbeta for ovarian folliculogenesis, and strongly suggest that (1) ERbeta plays an important role in mediating the stimulatory effects of estrogens on granulosa cell proliferation, (2) ERalpha is not required for follicle growth under wild type conditions, while it is indispensable for ovulation, and (3) ERalpha is also necessary for interstitial glandular cell development. Our data also indicate that ERbeta exerts some function in ERalphaKO uterus and vagina. ERalphabetaKO granulosa cells localized within degenerating follicles transform into cells displaying junctions that are unique to testicular Sertoli cells. From the distribution pattern of anti-Müllerian hormone (AMH) in ERalphabetaKO ovaries, it is unlikely that an elevated AMH level is the cause of Sertoli cell differentiation. Our results also show that cell proliferation in the prostate and urinary bladder of old ERbetaKO and ERalphabetaKO males is apparently normal.
    [Abstract] [Full Text] [Related] [New Search]