These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A selective peroxisome proliferator-activated receptor-gamma (PPARgamma) modulator blocks adipocyte differentiation but stimulates glucose uptake in 3T3-L1 adipocytes. Author: Mukherjee R, Hoener PA, Jow L, Bilakovics J, Klausing K, Mais DE, Faulkner A, Croston GE, Paterniti JR. Journal: Mol Endocrinol; 2000 Sep; 14(9):1425-33. PubMed ID: 10976920. Abstract: Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists such as the thiazolidinediones are insulin sensitizers used in the treatment of type 2 diabetes. These compounds induce adipogenesis in cell culture models and increase weight gain in rodents and humans. We have identified a novel PPARgamma ligand, LG100641, that does not activate PPARgamma but selectively and competitively blocks thiazolidinedione-induced PPARgamma activation and adipocyte conversion. It also antagonizes target gene activation as well as repression in agonist-treated 3T3-L1 adipocytes. This novel PPARgamma antagonist does not block adipocyte differentiation induced by a ligand for the retinoid X receptor (RXR), the heterodimeric partner for PPARgamma, or by a differentiation cocktail containing insulin, dexamethasone, and 1-methyl-3-isobutylxanthine. Surprisingly, LG100641, like the PPARgamma agonist rosiglitazone, increases glucose uptake in 3T3-L1 adipocytes. Such selective PPARgamma antagonists may help determine whether insulin sensitization by thiazolidinediones is mediated solely through PPARgamma activation, and whether there are PPARgamma-ligand-independent pathways for adipocyte differentiation. If selective PPARgamma modulators block adipogenesis in vivo, they may prevent obesity, lower insulin resistance, and delay the onset of type 2 diabetes.[Abstract] [Full Text] [Related] [New Search]