These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. Author: Daniels SA, Ailion M, Thomas JH, Sengupta P. Journal: Genetics; 2000 Sep; 156(1):123-41. PubMed ID: 10978280. Abstract: Sensory cues regulate several aspects of behavior and development in Caenorhabditis elegans, including entry into and exit from an alternative developmental stage called the dauer larva. Three parallel pathways, including a TGF-beta-like pathway, regulate dauer formation. The mechanisms by which the activities of these pathways are regulated by sensory signals are largely unknown. The gene egl-4 was initially identified based on its egg-laying defects. We show here that egl-4 has many pleiotropies, including defects in chemosensory behavior, body size, synaptic transmission, and dauer formation. Our results are consistent with a role for egl-4 in relaying sensory cues to multiple behavioral and developmental circuits in C. elegans. By epistasis analysis, we also place egl-4 in the TGF-beta-like branch and show that a SMAD gene functions downstream of egl-4 in multiple egl-4-regulated pathways, including chemosensation.[Abstract] [Full Text] [Related] [New Search]