These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Incidence of mosaic cell lines in vivo and malsegregation of chromosome 21 in lymphocytes in vitro of trisomy 21 patients: detection by fluorescence in situ hybridization on binucleated lymphocytes. Author: Shi Q, Adler ID, Zhang J, Zhang X, Shan X, Martin R. Journal: Hum Genet; 2000 Jan; 106(1):29-35. PubMed ID: 10982178. Abstract: In order to detect aneuploidy in interphase human lymphocytes, both in vivo and in vitro, fluorescence in situ hybridization (FISH) was carried out on binucleated cells cytokinesis-blocked by cytochalasin B at the first mitosis after phytohemagglutinin stimulation. A pericentric chromosome-21-specific DNA probe prepared from yeast artificial chromosome clone 881D2 by the polymerase chain reaction was employed. One thousand binucleated cells per individual were scored from cultures from twelve trisomy 21 patients aged 0.01-8.9 years (mean 4.3 years) and 20 normal children of similar age. Of trisomy 21 patients, increased frequencies of disomic cells in vivo (1.690+/-1.070%) and cells containing six signals with nondisjunction (0.822+/-0.554%) were found, compared with those of monosomic 21 cells in vivo (0.265+/-0.130%) and cells containing four signals with nondisjunction in normal children (0.369+/-0.250%; P=0.000 and P=0.000, respectively). These results show that malsegregation of chromosome 21 occurs more often in trisomic 21 cells than in disomic cells from normal children. The frequency of nondisjunction was significantly higher than the loss of chromosome 21 in both cultured trisomic (0.822+/-0.554% vs 0.043+/-0.049%, P=0.000) and disomic (0.369+/-0.250% vs 0.010+/-0.30%, P=0.000) cells. Comparisons of in vivo and in vitro data on aneuploidy indicate that a cell selection mechanism may exist in vivo. All these results show that FISH, with a chromosome-specific probe, on binucleated lymphocytes is a powerful tool for simultaneously detecting mosaic cell lines in vivo and malsegregation (loss and nondisjunction) of a corresponding chromosome in vitro in the same cell population.[Abstract] [Full Text] [Related] [New Search]