These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NADPH supply and mannitol biosynthesis. Characterization, cloning, and regulation of the non-reversible glyceraldehyde-3-phosphate dehydrogenase in celery leaves.
    Author: Gao Z, Loescher WH.
    Journal: Plant Physiol; 2000 Sep; 124(1):321-30. PubMed ID: 10982446.
    Abstract:
    Mannitol, a sugar alcohol, is a major primary photosynthetic product in celery (Apium graveolens L. cv Giant Pascal). We report here on purification, characterization, and cDNA cloning of cytosolic non-reversible glyceraldehyde-3-P dehydrogenase (nr-G3PDH, EC 1.2.1. 9), the apparent key contributor of the NADPH required for mannitol biosynthesis in celery leaves. As determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, purified nr-G3PDH showed a molecular mass of 53 kD. A 1,734-bp full-length cDNA clone (accession no. AF196292) encoding nr-G3PDH was identified using polymerase chain reaction and rapid amplification of cDNA ends techniques. The cDNA clone has an open reading frame of 1,491 bp encoding 496 amino acid residues with a calculated molecular weight of 53,172. K(m) values for the celery nr-G3PDH were low (6.8 microM for NADP(+) and 29 microM for D-glyceraldehyde-3-P). NADPH, 3-phosphoglycerate, and ATP were competitive inhibitors, and cytosolic levels of these three metabolites (as determined by nonaqueous fractionation) were all above the concentrations necessary to inhibit activity in vitro, suggesting that nr-G3PDH may be regulated through feedback inhibition by one or more metabolites. We also determined a tight association between activities of nr-G3PDH and mannose-6-P reductase and mRNA expression levels in response to both leaf development and salt treatment. Collectively, our data clearly show metabolic, developmental, and environmental regulation of nr-G3PDH, and also suggest that the supply of NADPH necessary for mannitol biosynthesis is under tight metabolic control.
    [Abstract] [Full Text] [Related] [New Search]