These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide provokes tumor necrosis factor-alpha expression in adult feline myocardium through a cGMP-dependent pathway.
    Author: Kalra D, Baumgarten G, Dibbs Z, Seta Y, Sivasubramanian N, Mann DL.
    Journal: Circulation; 2000 Sep 12; 102(11):1302-7. PubMed ID: 10982547.
    Abstract:
    BACKGROUND: The mechanism(s) responsible for the persistent coexpression of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in the failing heart is unknown. METHODS AND RESULTS: To determine whether NO was sufficient to provoke TNF-alpha biosynthesis, we examined the effects of an NO donor, S-nitroso-N-acetyl penicillamine (SNAP), in buffer-perfused Langendorff hearts. SNAP (1 micromol/L) treatment resulted in a time- and dose-dependent increase in myocardial TNF-alpha mRNA and protein biosynthesis in adult cat hearts. The effects of SNAP were completely abrogated by a NO quenching agent, 2-(4-carboxyphenyl)-4, 4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (C-PTIO), and mimicked by sodium nitroprusside. Electrophoretic mobility shift assays demonstrated that SNAP treatment led to the rapid induction of nuclear factor kappa-beta (NF-kappaB) but not AP-1. The importance of the cGMP pathway in terms of mediating NO-induced TNF-alpha biosynthesis was shown by studies that demonstrated that 8-bromo-cGMP mimicked the effects of SNAP and that the effects of SNAP could be completely abrogated using a cGMP antagonist, 1H-(1,2, 4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or protein kinase G antagonist (Rp-8-Br-cGMPS). SNAP and 8-Br-cGMP were both sufficient to lead to the site-specific phosphorylation (serine 32) and degradation of IkappaBalpha in isolated cardiac myocytes. Finally, protein kinase G was sufficient to directly phosphorylate IkappaBalpha on serine 32, a critical step in the activation of NF-kappaB. CONCLUSIONS: These studies show that NO provokes TNF-alpha biosynthesis through a cGMP-dependent pathway, which suggests that the coincident expression of TNF-alpha and NO may foster self-sustaining positive autocrine/paracrine feedback inflammatory circuits within the failing heart.
    [Abstract] [Full Text] [Related] [New Search]