These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Energetic and functional contribution of residues in the core binding factor beta (CBFbeta ) subunit to heterodimerization with CBFalpha. Author: Tang YY, Shi J, Zhang L, Davis A, Bravo J, Warren AJ, Speck NA, Bushweller JH. Journal: J Biol Chem; 2000 Dec 15; 275(50):39579-88. PubMed ID: 10984496. Abstract: Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in several developmental pathways, including hematopoiesis and bone development. Mutations in CBF genes are found in leukemias and bone disorders. CBFs consist of a DNA-binding CBFalpha subunit (Runx1, Runx2, or Runx3) and a non-DNA-binding CBFbeta subunit. CBFalpha binds DNA in a sequence-specific manner, whereas CBFbeta enhances DNA binding by CBFalpha. Recent structural analyses of the DNA-binding Runt domain of CBFalpha and the CBFbeta subunit identified the heterodimerization surfaces on each subunit. Here we identify amino acids in CBFbeta that mediate binding to CBFalpha. We determine the energy contributed by each of these amino acids to heterodimerization and the importance of these residues for in vivo function. These data refine the structural analyses and further support the hypothesis that CBFbeta enhances DNA binding by inducing a conformational change in the Runt domain.[Abstract] [Full Text] [Related] [New Search]