These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Atomic Force Microscopy Studies of Membranes: Effect of Surface Roughness on Double-Layer Interactions and Particle Adhesion. Author: Richard Bowen W, Doneva TA. Journal: J Colloid Interface Sci; 2000 Sep 15; 229(2):544-549. PubMed ID: 10985834. Abstract: Atomic force microscopy in conjunction with the colloid (silica) probe technique has been used to quantify the variations in electrical double-layer interactions and adhesion at different locations on a rough reverse osmosis membrane (AFC99) surface in NaCl solutions. Prior scanning of the membrane surface with the colloid probe allowed precise location for force measurements. The membrane surface was composed entirely of peaks and valleys with a surface roughness substantially greater than that of most other types of polymeric membranes. The magnitude of the electrical double-layer repulsion between the colloid probe and the membrane at peaks on the membrane surface was greatly reduced compared to that in the valleys. Nevertheless, adhesion of the colloid probe was lower at the peaks on the membrane surface than in the valleys with the difference increasing with decreasing salt concentration, and reaching a factor of more than 20 in 10(-3) M solution. The study shows that minimization of membrane fouling by colloids could be achieved by choosing membranes with a roughness periodicity preventing penetration of foulants into valleys on the surface. Copyright 2000 Academic Press.[Abstract] [Full Text] [Related] [New Search]