These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of experimental diabetes on the fatty acid composition, molecular species of phosphatidyl-choline and physical properties of hepatic microsomal membranes. Author: Brenner RR, Bernasconi AM, Garda HA. Journal: Prostaglandins Leukot Essent Fatty Acids; 2000 Sep; 63(3):167-76. PubMed ID: 10991775. Abstract: Streptozotocin diabetes depresses delta 9, delta 6 and delta 5 fatty acid desaturases, decreasing arachidonic acid and increasing linoleic acid, but also unexpectedly increasing docosahexaenoic acid in the different phospholipids of liver microsomal lipids. 18:0/20:4n-6, 16:0/20:4n-6 and 16:0/18:2n-6 are the predominant phosphatidyl choline (PC) molecular species in control rats, determining mainly PC contribution to the dynamic and biochemical properties of this bilayer. Diabetes decreases 20:4n-6 containing species and increases 18:2n-6 and 22:6n-3 containing species, maintaining the bulk dynamic properties in the hydrophobic interior of the bilayer, but changing its biochemical properties. The different dynamic parameters were measured by fluorometry using the probes 1,6-diphenyl-1,3,5-hexatriene (DPH), (4-trimethylammonium phenyl) 6-phenyl-1,3,5 (TMA-DPH) and 6-lauroyl-2,4-dimethyl aminonaphtalene (Laurdan). In the surrounding of the hydrophobic/hydrophilic interphase lipid molecules were less ordered and tightly packed in the diabetic samples, allowing a higher mobility of incorporated water molecules. The fact that diabetes decreases highly polyunsaturated acid of n-6 family, but increases docosahexaenoic acid, indicates the necessity of re-evaluating its effect in human physiology.[Abstract] [Full Text] [Related] [New Search]