These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Investigation into the involvement of phospholipases A(2) and MAP kinases in modulation of AA release and cell growth in A549 cells.
    Author: Choudhury QG, McKay DT, Flower RJ, Croxtall JD.
    Journal: Br J Pharmacol; 2000 Sep; 131(2):255-65. PubMed ID: 10991918.
    Abstract:
    1. We have investigated the contribution of specific PLA(2)s to eicosanoid release from A549 cells by using specific inhibitors of secretory PLA(2) (ONO-RS-82 and oleyloxyethylphosphocholine), cytosolic PLA(2) (AACOCF(3) and MAFP) and calcium-independent PLA(2) (HELSS, MAFP and PACOCF(3)). Similarly, by using specific inhibitors of p38 MAPK (SB 203580), ERK1/2 MAPK (Apigenin) and MEK1/2 (PD 98059) we have further evaluated potential pathways of AA release in this cell line. 2. ONO-RS-82 and oleyloxyethylphosphocholine had no significant effect on EGF or IL-1beta stimulated (3)H-AA or PGE(2) release or cell proliferation. AACOCF(3), HELSS, MAFP and PACOCF(3) significantly inhibited both EGF and IL-1beta stimulated (3)H-AA and PGE(2) release as well as cell proliferation. Apigenin and PD 98509 significantly inhibited both EGF and IL-1beta stimulated (3)H-AA and PGE(2) release and cell proliferation whereas, SB 203580 had no significant effect on EGF or IL-1beta stimulated (3)H-AA release, or cell proliferation but significantly suppressed EGF or IL-1beta stimulated PGE(2) release. 3. These results confirm that the liberation of AA release, generation of PGE(2) and cell proliferation is mediated largely through the actions of cPLA(2) whereas, sPLA(2) plays no significant role. We now also report a hitherto unsuspected contribution of iPLA(2) to this process and demonstrate that the stimulating action of EGF and IL-1beta in AA release and cell proliferation is mediated in part via a MEK and ERK-dependent pathway (but not through p38MAPK). We therefore propose that selective inhibitors of MEK and MAPK pathways may be useful in controlling AA release, eicosanoid production and cell proliferation.
    [Abstract] [Full Text] [Related] [New Search]