These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibitors of Na+/Ca2+ exchanger prevent oxidant-induced intracellular Ca2+ increase and apoptosis in a human hepatoma cell line. Author: Kim JA, Kang YS, Lee SH, Lee YS. Journal: Free Radic Res; 2000 Sep; 33(3):267-77. PubMed ID: 10993480. Abstract: Oxidative stress appears to be implicated in the pathogenesis of various diseases including hepatotoxicity. Although intracellular Ca2+ signals have been suggested to play a role in the oxidative damage of hepatocytes, the sources and effects of oxidant-induced intracellular Ca2+ increases are currently debatable. Thus, in this study we investigated the exact source and mechanism of oxidant-induced liver cell damage using HepG2 human hepatoma cells as a model liver cellular system. Treatment with 200 microM of tert-butyl hydroperoxide (tBOOH) induced a sustained increase in the level of intracellular reactive oxygen intermediates (ROI) and apoptosis, assessed by 2',7'-dichlorofluorescein fluorescence and flow cytometry, respectively. Antioxidants, N-acetyl cysteine (NAC) or N,N'-diphenyl-p-phenylenediamine significantly inhibited both the ROI generation and apoptosis. In addition, tBOOH induced a slow and sustained increase in intracellular Ca2+ concentration, which was completely prevented by the antioxidants. An intracellular Ca2+ chelator, bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid/cetoxymethyl ester significantly suppressed the tBOOH-induced apoptosis. These results imply that activation of an intracellular Ca2+ signal triggered by increased ROI may mediate the tBOOH-induced apoptosis. Both intracellular Ca2+ increase and induction of apoptosis were significantly inhibited by an extracellular Ca2+ chelator or Na+/Ca2+ exchanger blockers (bepridil and benzamil), whereas neither Ca2+ channel antagonists (verapamil and nifedipine) nor a nonselective cation channel blocker (flufenamic acid) had an effect. These results suggest that tBOOH may increase intracellular Ca2+ through the activation of reverse mode of Na+/Ca2+ exchanger. However, tBOOH decreased intracellular Na+ concentration, which was completely prevented by NAC. These results indicate that ROI generated by tBOOH may increase intracellular Ca2+ concentration by direct activation of the reverse mode of Na+/Ca2+ exchanger, rather than indirect elevation of intracellular Na+ levels. Taken together, these results suggest that the oxidant, tBOOH induced apoptosis in human HepG2 cells and that intracellular Ca2+ may mediate this action of tBOOH. These results further suggest that Na+/Ca2+ exchanger may be a target for the management of oxidative hepatotoxicity.[Abstract] [Full Text] [Related] [New Search]