These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain.
    Author: Wu DC, Ye W, Che XM, Yang GY.
    Journal: J Cereb Blood Flow Metab; 2000 Sep; 20(9):1320-30. PubMed ID: 10994854.
    Abstract:
    The purpose of this study was to examine the activation, topographic distribution, and cellular location of three mitogen-activated protein kinases (MAPKs) after permanent middle cerebral artery occlusion (MCAO) in mice. Phosphorylated MAPKs expression in the ischemic region was quantified using Western blot analysis and localized immunohistochemically using the diaminobenzide staining and double-labeled immunostaining. Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), p38 mitogen-activated protein (p38), and c-Jun NH2-terminal kinase or stress-activated protein kinase (SAPK/JNK) were initially activated at 30 minutes, 10 minutes, and 5 minutes, respectively, after focal cerebral ischemia. Peak expression represented a 2.7-fold, 3.7-fold, and 4.8-fold increase in each of these MAPKs, respectively. The immunohistochemical expressions of ERK1, ERK2, p38, and SAPK/JNK protein paralleled the Western blot analysis results. Double-labeled immunofluorescent staining demonstrated that the neurons and astrocytes expressed ERK1, ERK2, p38, and SAPK/JNK during the early time points after MCAO. The current results demonstrate that brain damage after ischemia rapidly triggers time-dependent ERK1, ERK2, p38, and SAPK/ JNK phosphorylation, and reveals that neurons and astrocytes are involved in the activation of the MAPK pathway. This very early expression of MAPKs suggests that MAPKs may be closely involved in signal transduction during cerebral ischemia.
    [Abstract] [Full Text] [Related] [New Search]