These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Is l-arginine infusion an adequate tool to assess endothelium-dependent vasodilation of the human renal vasculature?
    Author: Schlaich MP, Jacobi J, John S, Delles C, Fleischmann I, Schmieder RE.
    Journal: Clin Sci (Lond); 2000 Oct; 99(4):293-302. PubMed ID: 10995594.
    Abstract:
    Systemic administration of L-arginine alters renal haemodynamics in humans. We examined whether L-arginine-induced vasodilation of the renal vasculature is related to an increased production and release of NO by comparing the effects of L- and D-arginine on renal endothelium-dependent vasodilation. In a double-blind randomized cross-over study including 20 young, healthy male white subjects (age 26+/-2 years), we determined the effects of intravenous administration of L-arginine or its enantiomer D-arginine, at doses of 100 mg/kg body weight for 30 min or 500 mg/kg for 30 min, on renal haemodynamics. Renal plasma flow (RPF) and glomerular filtration rate (GFR) were assessed by a constant-infusion input-clearance technique (using p-aminohippuric acid and inulin respectively). In addition, changes in blood pressure, heart rate, urinary sodium excretion (U(Na)) and urinary cGMP were measured. HPLC was used to determine L- and D-arginine concentrations. Intravenous infusion of L-arginine at 100 mg/kg for 30 min increased RPF from 641+/-87 to 677+/-98 ml/min (P=0.019), whereas infusion of D-arginine did not (from 642+/-74 to 657+/-86 ml/min; not significant). The change in RPF was more marked during the infusion of L-arginine than during the infusion of D-arginine (+36+/-61 versus +16+/-57 ml/min; P=0.037). Infusion of both L- and D-arginine at doses of 500 mg/kg for 30 min increased RPF from baseline [from 641+/-87 to 762+/-133 ml/min (P<0.001) and from 642+/-74 to 713+/-120 ml/min (P=0.004) respectively], but the change in RPF again was greater in response to L-arginine infusion than to infusion with D-arginine (+121+/-97 versus +71+/-94 ml/min; P=0.018). In accordance, changes in renal vascular resistance (RVR) were higher in response to L-arginine compared with D-arginine for both doses (P<0.05 and P<0.001 respectively). U(Na) increased only with L-arginine (change in U(Na), +0.33+/-0.26 mmol/min; P<0.01) but not with D-arginine (change in U(Na), +0.11+/-0.17 mmol/min; not significant). The change in U(Na) was more pronounced during infusion of L-arginine compared with infusion of D-arginine (P=0.023). In parallel, urinary excretion of cGMP only increased in response to L-arginine (+676+/-272 pmol/l; P=0.038) and not during D-arginine infusion (+185+/-153 pmol/l; not significant). L-Arginine-induced changes in RPF, RVR, U(Na) and cGMP excretion differed significantly from those induced by D-arginine. Thus although no direct measurements of NO synthesis were performed, putative markers of NO synthesis suggest that the renal vasodilatory response to L-arginine, at least in part, was due to increased production and release of NO. The dose of L-arginine at 100 mg/kg for 30 min emerged as the most suitable, because of the absence of systemic haemodynamic changes. The effects of infusion of L-arginine at 500 mg/kg for 30 min on renal endothelium-dependent vasodilation need to be corrected for the effects of D-arginine before conclusions can be drawn.
    [Abstract] [Full Text] [Related] [New Search]