These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Abolishment of proton pumping and accumulation in the E1P conformational state of a plant plasma membrane H+-ATPase by substitution of a conserved aspartyl residue in transmembrane segment 6.
    Author: Buch-Pedersen MJ, Venema K, Serrano R, Palmgren MG.
    Journal: J Biol Chem; 2000 Dec 15; 275(50):39167-73. PubMed ID: 10995773.
    Abstract:
    The plasma membrane H(+)-ATPase AHA2 of Arabidopsis thaliana, which belongs to the P-type ATPase superfamily of cation-transporting ATPases, pumps protons out of the cell. To investigate the mechanism of ion transport by P-type ATPases we have mutagenized Asp(684), a residue in transmembrane segment M6 of AHA2 that is conserved in Ca(2+)-, Na(+)/K(+)-, H(+)/K(+)-, and H(+)-ATPases and which coordinates Ca(2+) ions in the SERCA1 Ca(2+)-ATPase. We describe the expression, purification, and biochemical analysis of the Asp(684) --> Asn mutant, and provide evidence that Asp(684) in the plasma membrane H(+)-ATPase is required for any coupling between ATP hydrolysis, enzyme conformational changes, and H(+)-transport. Proton pumping by the reconstituted mutant enzyme was completely abolished, whereas ATP was still hydrolyzed. The mutant was insensitive to the inhibitor vanadate, which preferentially binds to P-type ATPases in the E(2) conformation. During catalysis the Asp(684) --> Asn enzyme accumulated a phosphorylated intermediate whose stability was sensitive to addition of ADP. We conclude that the mutant enzyme is locked in the E(1) conformation and is unable to proceed through the E(1)P-E(2)P transition.
    [Abstract] [Full Text] [Related] [New Search]