These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of potassium channels in the protective effect of 17beta-estradiol on hypercholesterolemic rabbit carotid artery.
    Author: Ghanam K, Ea-Kim L, Javellaud J, Oudart N.
    Journal: Atherosclerosis; 2000 Sep; 152(1):59-67. PubMed ID: 10996340.
    Abstract:
    The involvement of endothelium-derived hyperpolarizing factor (EDHF) in the protective effect of 17beta-estradiol was investigated on the phenylephrine-precontracted carotid artery from cholesterol fed rabbits. Animals were fed for 8 weeks as follows: control group, standard chow; (control+estradiol) group, standard chow+17beta-estradiol; standard chow+1% cholesterol, cholesterol group; or (cholesterol+estradiol) group, 1% cholesterol chow+17beta-estradiol. Relaxations to acetylcholine (ACh) (3 nM-30 microM) were performed with N(omega) nitro-L-arginine methyl ester (300 microM) and indomethacin (10 microM). Charybdotoxin (50 nM)+apamin (50 nM), glibenclamide (10 microM) or 4-aminopyridine (1 mM) were used to block, respectively, calcium-activated-K(+), adenosine triphosphate (ATP)-sensitive-K(+) and voltage-dependent K(+) channels. In the control group, ACh induced a residual concentration-dependent relaxation. This response was impaired by hypercholesterolemia and restored by 17beta-estradiol. In control and cholesterol groups, 4-aminopyridine or glibenclamide did not affect this relaxation, but in (control+estradiol) and (cholesterol+estradiol) groups, glibenclamide suppressed it. In all groups, this persisting relaxation was completely abolished by charybdotoxin alone or with apamin, by hemoglobin (10 microM), a nitric oxide scavenger, or by LY83183 (10 microM), a guanylate cyclase inhibitor. Thus, in the rabbit carotid artery, the protective effect of 17beta-estradiol against hypercholesterolemia is probably mediated by a nitric oxide/cyclic GMP pathway which activates calcium-targeted and ATP-dependent K(+) channels.
    [Abstract] [Full Text] [Related] [New Search]