These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+/H+ exchangers. Author: Darley CP, van Wuytswinkel OC, van der Woude K, Mager WH, de Boer AH. Journal: Biochem J; 2000 Oct 01; 351(Pt 1):241-9. PubMed ID: 10998367. Abstract: Sodium at high millimolar levels in the cytoplasm is toxic to plant and yeast cells. Sequestration of Na(+) ions into the vacuole is one mechanism to confer Na(+)-tolerance on these organisms. In the present study we provide direct evidence that the Arabidopsis thaliana At-NHX1 gene and the yeast NHX1 gene encode low-affinity electroneutral Na(+)/H(+) exchangers. We took advantage of the ability of heterologously expressed At-NHX1 to functionally complement the yeast nhx1-null mutant. Experiments on vacuolar vesicles isolated from yeast expressing At-NHX1 or NHX1 provided direct evidence for pH-gradient-energized Na(+) accumulation into the vacuole. A major difference between NHX1 and At-NHX1 is the presence of a cleavable N-terminal signal peptide (SP) in the former gene. Fusion of the SP to At-NHX1 resulted in an increase in the magnitude of Na(+)/H(+) exchange, indicating a role for the SP in protein targeting or regulation. Another distinguishing feature between the plant and yeast antiporters is their sensitivity to the diuretic compound amiloride. Whereas At-NHX1 was completely inhibited by amiloride, NHX1 activity was reduced by only 20-40%. These results show that yeast as a heterologous expression system provides a convenient model to analyse structural and regulatory features of plant Na(+)/H(+) antiporters.[Abstract] [Full Text] [Related] [New Search]