These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Developmental regulation of glutamic acid decarboxylase mRNA expression and splicing in the rat striatum by dopamine. Author: Küppers E, Sabolek M, Anders U, Pilgrim C, Beyer C. Journal: Brain Res Mol Brain Res; 2000 Sep 30; 81(1-2):19-28. PubMed ID: 11000475. Abstract: Dopamine (DA) promotes the morphological differentiation of striatal GABAergic neurons through D(1) receptor activation and cAMP/PKA signaling. In this study, we investigated the developmental role of DA on the expression of the two GAD(65/67) genes and the alternative splicing of GAD(67) transcripts in the rat striatum. In vivo, embryonic and adult GAD(67) splice variants and GAD(65) transcripts increased until E17 and E19, respectively. Thereafter, the embryonic GAD(67) isoform disappeared, whereas GAD(65) mRNA levels remained unchanged postnatally. The hypothesis that the prenatal ingrowth and functional maturation of nigrostriatal afferents may be responsible for these developmental events through DA-dependent signaling pathways was tested in E17 rat striatal cultures. Treatment with DA and D(1) but not D(2) agonists decreased the ratio of embryonic to adult GAD(67) mRNAs and increased GAD(65) mRNA levels as well as GABA synthesis rates. Our findings demonstrate a distinct developmental switch in the regulation of GAD(65) expression and GAD(67) splicing in the rat striatum which clearly depends upon D(1) receptor but not D(2) signaling. The dopaminergic input thus appears to control the functional differentiation of GABAergic neurons not only by upregulation of expression of the two GAD genes but also by regulating GAD(67) splicing.[Abstract] [Full Text] [Related] [New Search]