These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic component of heat stress in dairy cattle, parameter estimation. Author: Ravagnolo O, Misztal I. Journal: J Dairy Sci; 2000 Sep; 83(9):2126-30. PubMed ID: 11003247. Abstract: Our data included 119,205 first-parity, test-day records from 15,002 Holsteins in 134 Georgia farms with temperature and humidity data from 21 weather stations throughout Georgia. The test-day model included the effects of herd test date, days-in-milk (DIM) classes, age, milking frequency, general additive effect, random regression on the heat-humidity index for heat-tolerance additive effect, general permanent environment, and the random regression on the heat-humidity index for a permanent environment. The general effects, which corresponded to effects in the current repeatability models, were assumed to be correlated with the heat-tolerance effects. Variance components were estimated by REML. For heat-humidity indices below 72, heritability for milk was 0.17, and additive variance of heat tolerance was 0. For a heat-humidity index of 86 (which would correspond to temperatures of 36 degrees C at 50% humidity), the additive variance of heat tolerance was as high as for general effect, and the genetic correlation between the two effects was -0.36. Results for fat and protein were similar. Current selection for production reduces heat tolerance. Joint selection for heat tolerance and production is possible.[Abstract] [Full Text] [Related] [New Search]