These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synergistic hydrolysis of carboxymethyl cellulose and acid-swollen cellulose by two endoglucanases (CelZ and CelY) from Erwinia chrysanthemi. Author: Zhou S, Ingram LO. Journal: J Bacteriol; 2000 Oct; 182(20):5676-82. PubMed ID: 11004164. Abstract: Erwinia chrysanthemi produces a battery of hydrolases and lyases which are very effective in the maceration of plant cell walls. Although two endoglucanases (CelZ and CelY; formerly EGZ and EGY) are produced, CelZ represents approximately 95% of the total carboxymethyl cellulase activity. In this study, we have examined the effectiveness of CelY and CelZ alone and of combinations of both enzymes using carboxymethyl cellulose (CMC) and amorphous cellulose (acid-swollen cellulose) as substrates. Synergy was observed with both substrates. Maximal synergy (1.8-fold) was observed for combinations containing primarily CelZ; the ratio of enzyme activities produced was similar to those produced by cultures of E. chrysanthemi. CelY and CelZ were quite different in substrate preference. CelY was unable to hydrolyze soluble cellooligosaccharides (cellotetraose and cellopentaose) but hydrolyzed CMC to fragments averaging 10.7 glucosyl units. In contrast, CelZ readily hydrolyzed cellotetraose, cellopentaose, and amorphous cellulose to produce cellobiose and cellotriose as dominant products. CelZ hydrolyzed CMC to fragments averaging 3.6 glucosyl units. In combination, CelZ and CelY hydrolyzed CMC to products averaging 2.3 glucosyl units. Synergy did not require the simultaneous presence of both enzymes. Enzymatic modification of the substrate by CelY increased the rate and extent of hydrolysis by CelZ. Full synergy was retained by the sequential hydrolysis of CMC, provided CelY was used as the first enzyme. A general mechanism is proposed to explain the synergy between these two enzymes based primarily on differences in substrate preference.[Abstract] [Full Text] [Related] [New Search]