These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two-dimensional incommensurately modulated structure of (Sr0.13Ca0. 87)2CoSi2O7 crystals. Author: Bagautdinov B, Hagiya K, Kusaka K, Ohmasa M, Iishi K. Journal: Acta Crystallogr B; 2000 Oct; 56 ( Pt 5)():811-21. PubMed ID: 11006557. Abstract: The incommensurate structure of (Sr(0.13)Ca(0.87))(2)CoSi(2)O(7) at room temperature has been determined from single-crystal X-ray diffraction data. The compound has a non-centrosymmetric tetragonal basic cell of a = 7.8743 (4) and c = 5.0417 (2) A with the space group P4;2(1)m. The refinements of the basic structure converged to R = 0.038 for 757 main reflections. The two-dimensional incommensurate structure is characterized by the wavevectors q(1) = 0.286 (3)(a* + b*) and q(2) = 0.286 (3)(-a* + b*), where a*, b* are the reciprocal lattice vectors of the basic structure. With the (3 + 2)-dimensional superspace group P(p4mg)(P4;2(1)(m)), the refinements converged to R = 0.071 for 1697 observed reflections (757 main and 940 satellite reflections). The structure is described in terms of displacement of the atoms, rotation, distortion of CoO(4) and SiO(4) tetrahedra, and the partial ordering of the Sr and Ca atoms accompanied with the modulation. Correlated evolution of these features throughout the crystal gives rise to various oxygen coordination around Ca/Sr. Comparison of the derived modulated structure to that of Ca(2)CoSi(2)O(7) clarified that the partial substitution of Ca by large alkaline-earth atoms such as Sr should decrease the distortion of the polyhedra around the cations.[Abstract] [Full Text] [Related] [New Search]