These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cs+ block of the cardiac muscarinic K+ channel, GIRK1/GIRK4, is not dependent on the aspartate residue at position 173. Author: Dibb KM, Leach R, Lancaster MK, Findlay JB, Boyett MR. Journal: Pflugers Arch; 2000 Sep; 440(5):740-4. PubMed ID: 11007316. Abstract: Cs+ block of GIRK1/GIRK4 expressed in Xenopus oocytes has been investigated. It has been reported that a negatively charged aspartate residue at position 172 in IRK1 is responsible for Cs+ block of the channel. IRK1, a homotetramer, has four aspartate residues at this position. GIRK1/GIRK4 is a heterotetramer and has two aspartate residues at the equivalent position (GIRK1-D173) and, consequently, it should be less sensitive to Cs+. Cs+ caused voltage-dependent block of GIRK1/GIRK4 current (measured with the two-microelectrode voltage-clamp technique). The apparent fraction of the electrical field through which Cs+ moves in order to reach its site of block (delta approximately equals 1.66) is comparable to that in IRK1, suggesting that Cs+ binds to a similar site in the two channels. GIRK1/GIRK4 was less sensitive than IRK1 to Cs+ -the Kd was 3.0-8.5 times greater and at potentials more negative than approximately or = to 130 mV there was voltage-dependent relief of block of GIRK1/GIRK4 (not the case with IRK1). However, the mutations GIRK1-D173A and GIRK1-D173Q increased the sensitivity of the channel to Cs+, while adding a negatively charged aspartate residue to GIRK4 at the equivalent position (GIRK4-N 79D) decreased Cs+ sensitivity. GIRK1-D173 cannot be the site of Cs+ block of GIRK1/GIRK4.[Abstract] [Full Text] [Related] [New Search]