These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphoisoprenoid binding specificity of geranylgeranyltransferase type II.
    Author: Thomä NH, Iakovenko A, Owen D, Scheidig AS, Waldmann H, Goody RS, Alexandrov K.
    Journal: Biochemistry; 2000 Oct 03; 39(39):12043-52. PubMed ID: 11009619.
    Abstract:
    Geranylgeranyltransferase type II (GGTase-II) modifies small monomeric GTPases of the Rab family by attaching geranylgeranyl moieties onto two cysteines of their C-terminus. We investigated to what extent GGTase-II discriminates between its native substrate geranylgeranyl pyrophosphate (GGpp) and other phosphoisoprenoids, including farnesyl pyrophosphate (Fpp). On the basis of a novel fluorescent assay, we demonstrated that GGpp binds to GGTase-II with an affinity of 8 +/- 4 nM, while Fpp is bound less strongly (K(d) = 60 +/- 8 nM). Analysis of the binding kinetics of four different phosphoisoprenoids indicated that in all cases association is rapid, with rate constants in the range of 0.15 nM(-1) s(-1). In contrast, the dissociation rates differed greatly, depending on the phosphoisoprenoid used, with weak binding substrates generally displaying an increased rate of dissociation. The affinity of GGpp and Fpp for GGTase-II was also determined in the presence of the Rab7-REP-1 complex. The affinity for GGpp was essentially unaffected by the presence of the complex; Fpp on the other hand bound less strongly to the GGTase-II under these conditions, resulting in a K(d) of 260 +/- 60 nM. In vitro prenylation experiments were used to establish that Fpp not only does bind to GGTase-II but also is transferred with an observed rate constant of 0.082 s(-1) which is very similar to that of GGpp. The implications of the low level of discrimination by GGTase-II for the in vivo specificity of the enzyme and the use of farnesyltransferase inhibitors in anti-cancer therapy are discussed.
    [Abstract] [Full Text] [Related] [New Search]