These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On the dynamic persistence of cooperation: how lower individual fitness induces higher survivability.
    Author: Sella G, Lachmann M.
    Journal: J Theor Biol; 2000 Oct 21; 206(4):465-85. PubMed ID: 11013109.
    Abstract:
    We study a model in which cooperation and defection coexist in a dynamical steady state. In our model, subpopulations of cooperators and defectors inhabit sites on a lattice. The interactions among the individuals at a site, in the form of a prisoner's dilemma (PD) game, determine their fitnesses. The chosen PD payoff allows cooperators, but not defectors, to maintain a homogeneous population. Individuals mutate between types and migrate to neighboring sites with low probabilities. We consider both density-dependent and density-independent versions of the model. The persistence of cooperation in this model can be explained in terms of the life cycle of a population at a site. This life cycle starts when one cooperator establishes a population. Then defectors invade and eventually take over, resulting finally in the death of the population. During this life cycle, single cooperators migrate to empty neighboring sites to found new cooperator populations. The system can reach a steady state where cooperation prevails if the global "birth" rate of populations is equal to their global "death" rate. The dynamic persistence of cooperation ranges over a large section of the model's parameter space. We compare these dynamics to those from other models for the persistence of altruism and to predator-prey models.
    [Abstract] [Full Text] [Related] [New Search]