These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resonance Raman studies indicate a unique heme active site in prostaglandin H synthase.
    Author: Lou BS, Snyder JK, Marshall P, Wang JS, Wu G, Kulmacz RJ, Tsai AL, Wang J.
    Journal: Biochemistry; 2000 Oct 10; 39(40):12424-34. PubMed ID: 11015223.
    Abstract:
    Prostaglandin H synthase isoforms 1 and 2 (PGHS-1 and -2) catalyze the first two steps in the biosynthesis of prostaglandins. Resonance Raman spectroscopy was used to characterize the PGHS heme active site and its immediate environment. Ferric PGHS-1 has a predominant six-coordinate high-spin heme at room temperature, with water as the sixth ligand. The proximal histidine ligand (or the distal water ligand) of this hexacoordinate high-spin heme species was reversibly photolabile, leading to a pentacoordinate high-spin ferric heme iron. Ferrous PGHS-1 has a single species of five-coordinate high-spin heme, as evident from nu(2) at 1558 cm(-1) and nu(3) at 1471 cm(-1). nu(4) at 1359 cm(-1) indicates that histidine is the proximal ligand. A weak band at 226-228 cm(-1) was tentatively assigned as the Fe-His stretching vibration. Cyanoferric PGHS-1 exhibited a nu(Fe)(-)(CN) line at 446 cm(-1) and delta(Fe)(-)(C)(-)(N) at 410 cm(-1), indicating a "linear" Fe-C-N binding conformation with the proximal histidine. This linkage agrees well with the open distal heme pocket in PGHS-1. The ferrous PGHS-1 CO complex exhibited three important marker lines: nu(Fe)(-)(CO) (531 cm(-1)), delta(Fe)(-)(C)(-)(O) (567 cm(-1)), and nu(C)(-)(O) (1954 cm(-1)). No hydrogen bonding was detected for the heme-bound CO in PGHS-1. These frequencies markedly deviated from the nu(Fe)(-)(CO)/nu(C)(-)(O) correlation curve for heme proteins and porphyrins with a proximal histidine or imidazolate, suggesting an extremely weak bond between the heme iron and the proximal histidine in PGHS-1. At alkaline pH, PGHS-1 is converted to a second CO binding conformation (nu(Fe)(-)(CO): 496 cm(-1)) where disruption of the hydrogen bonding interactions to the proximal histidine may occur.
    [Abstract] [Full Text] [Related] [New Search]