These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spin-label electron spin resonance studies on the mode of anchoring and vertical location of the N-acyl chain in N-acylphosphatidylethanolamines.
    Author: Swamy MJ, Ramakrishnan M, Angerstein B, Marsh D.
    Journal: Biochemistry; 2000 Oct 10; 39(40):12476-84. PubMed ID: 11015229.
    Abstract:
    Electron spin resonance (ESR) studies have been performed on N-myristoyl dimyristoylphosphatidylethanolamine (N-14-DMPE) membranes using both phosphatidylcholines spin-labeled at different positions in the sn-2 acyl chain and N-acyl phosphatidylethanolamines spin-labeled in the N-acyl chain to characterize the location and mobility of the N-acyl chain in the lipid membranes. Comparison of the positional dependences of the spectral data for the two series of spin-labeled lipids suggests that the N-acyl chain is positioned at approximately the same level as the sn-2 chain of the phosphatidylcholine spin-label. Further, similar conclusions are reached when the ESR spectra of the N-acyl PE spin-labels in dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylethanolamine (DMPE) host matrixes are compared with those of phosphatidylcholine spin-labels in these two lipids. Finally, the chain ordering effect of cholesterol has also been found to be similar for the N-acyl PE spin-label and PC spin-labels, when the host matrix is either DMPC and cholesterol or N-14-DMPE and cholesterol at a 6:4 mole ratio. In both cases, the gel-to-liquid crystalline phase transition is completely abolished but cholesterol perturbs the gel-phase mobility of N-14-DMPE more readily than that of DMPC. These results demonstrate that the long N-acyl chains are anchored firmly in the hydrophobic interior of the membrane, in an orientation that is parallel to that of the O-acyl chains, and are located at nearly the same vertical position as that of the sn-2 acyl chains in the lipid bilayer. There is a high degree of dynamic compatibility between the N-acyl chains and the O-acyl chains of the lipid bilayer core, although bilayers of N-acyl phosphatidylethanolamines possess a more hydrophobic interior than phosphatidylcholine bilayers. These results provide a structural basis for rationalizing the biological properties of NAPEs.
    [Abstract] [Full Text] [Related] [New Search]