These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of ethanol on innate protection of gastric mucosal epithelial surfaces and the risk of injury.
    Author: Slomiany A, Piotrowski E, Piotrowski J, Slomiany BL.
    Journal: J Physiol Pharmacol; 2000 Sep; 51(3):433-47. PubMed ID: 11016863.
    Abstract:
    Earlier investigations on the effect of ethanol on synthesis and posttranlational glycosylation of gastric mucus glycoprotein (mucin) revealed quantitative changes in the apoprotein assembly, glycosylation, and mucin retention on the mucosal surface (Slomiany et al.., Alcoholism: Clin. Exp. Res. 21, 417-423, 1998). To assess whether metabolic consequences of ethanol ingestion, documented in the in vitro system are also occurring in vivo the rats were subjected to 8 weeks of ethanol containing liquid diet. The retention of mucin on the surface of gastric mucosa was quantitated by measuring the binding of gastric mucin to Mucin Binding Protein (MBP) of gastric mucosa. The results were compared with those obtained with the rats subjected to pair-feeding the isocaloric-control diet. Before alcohol administration, and in two weeks' intervals thereafter, the gastric contents from the animals was collected and mucin purified. After 8 weeks of the respective diet, the animals were sacrificed and their gastric mucosa used for MBP preparation. The binding of mucin to MBP before ethanol, and after 2, 4, 6, and 8 weeks of ethanol diet was quantitated with Enzyme Linked Lectin Assay (ELLA). The study with standard mucin revealed that binding of mucin to MBP differs substantially between individual animals. The same variability in binding was observed with the individual mucin preparations collected at the onset of the experiment. However, with the progression of ethanol feeding, the mucin samples besides displaying the variable and animal-specific binding to MBP at the initiation of the experiment, also showed a dramatic decrease in binding. In five animals, after two weeks of ethanol diet, mucin binding to MBP decreased by 50%; in two animals, the drastic decrease in binding was observed in mucin collected after four weeks of alcohol feeding; and in one animal a 20% decrease in binding persisted for six weeks, and then decreased to 50% in the last collection. Also, in two animals, the mucin collected after 8 weeks of ethanol feeding retained only 6-9% of the initial binding capacity. In contrast, in pair-fed controls, the mucin binding to MBP remained the same or increased up to 20%. Results of the studies, performed on mucin of the individual animals and matching preparations of MBP, showed that each animal expresses different degree of mucin binding. Moreover, in chronic ethanol ingestion, the individual variations are accompanied by a decrease in mucin binding to MBP. Since the observed decrease in binding occurred in samples containing the same preparation of MBP, the component affected by alcohol resides on mucin. Thus, considering the in vitro impact of ethanol on generation of carbohydrate chains in Golgi, and the finding on mucin oligosaccharides-dependent mucin-MBP complex formation, we conclude that ethanol impairs the synthesis of mucin oligosaccharide structures required for binding with MBP, and the retention on gastric mucosal surfaces.
    [Abstract] [Full Text] [Related] [New Search]