These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of cyclin D(1) expression and DNA synthesis by phosphatidylinositol 3-kinase in airway smooth muscle cells.
    Author: Page K, Li J, Wang Y, Kartha S, Pestell RG, Hershenson MB.
    Journal: Am J Respir Cell Mol Biol; 2000 Oct; 23(4):436-43. PubMed ID: 11017907.
    Abstract:
    We have shown in bovine tracheal myocytes that extracellular signal-regulated kinase (ERK) and Rac1 function as upstream activators of transcription from the cyclin D(1) promoter. We now examine the role of phosphatidylinositol (PI) 3-kinase in this process. PI 3-kinase activity was increased by platelet-derived growth factor (PDGF) and attenuated by the PI 3-kinase inhibitors wortmannin and LY294002. These inhibitors also decreased cyclin D(1) promoter activity, protein abundance, and DNA synthesis. Overexpression of the active catalytic subunit of PI 3-kinase (p110(PI) (3-K)CAAX) was sufficient to activate the cyclin D(1) promoter. Wortmannin and LY294002 failed to attenuate PDGF-induced ERK activation, and overexpression of p110(PI) (3-K)CAAX was insufficient to activate ERK. p110(PI) (3-K)CAAX-induced cyclin D(1) promoter activity was not blocked by PD98059, an inhibitor of mitogen-activated protein kinase/ERK kinase. We next examined whether PI 3-kinase and the 21-kD guanidine triphosphatase Rac1 regulate cyclin D(1) promoter activity by similar mechanisms. p110(PI) (3-K)CAAX-induced cyclin D(1) promoter activity was decreased by two inhibitors of Rac1-mediated signaling, catalase and diphenylene iodonium. Further, PDGF, PI 3-kinase, and Rac1 each activated the cyclin D(1) promoter at the cyclic adenosine monophosphate response element binding protein (CREB)/activating transcription factor (ATF)-2 binding site, as evidenced by expression of a CREB/ATF-2 reporter plasmid. Finally, PI 3-kinase and Rac1-induced CREB/ATF-2 transactivation were each inhibited by catalase. Together, these data suggest that in airway smooth muscle (ASM) cells, PI 3-kinase regulates transcription from the cyclin D(1) promoter and DNA synthesis in an ERK-independent manner. Further, PI 3-kinase and Rac1 regulate ASM cell cycle traversal via a common cis-regulatory element in the cyclin D(1) promoter.
    [Abstract] [Full Text] [Related] [New Search]