These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Daunorubicin cardiotoxicity: evidence for the importance of the quinone moiety in a free-radical-independent mechanism. Author: Shadle SE, Bammel BP, Cusack BJ, Knighton RA, Olson SJ, Mushlin PS, Olson RD. Journal: Biochem Pharmacol; 2000 Nov 15; 60(10):1435-44. PubMed ID: 11020445. Abstract: Anthracyclines, such as daunorubicin (Daun), and other quinone-containing compounds can stimulate the formation of toxic free radicals. The present study tests the hypothesis that the quinone moiety of Daun, by increasing free-radical production, disrupts sarcoplasmic reticulum (SR) function and thereby inhibits myocardial contractility in vitro. We compared Daun with its quinone-deficient analogue, 5-iminodaunorubicin (5-ID), using experimental interventions to produce various contractile states that depend on SR function. At concentrations of Daun or 5-ID that did not alter contractility (dF/dt) of steady-state contractions (1 Hz) in electrically paced atria isolated from adult rabbits, only Daun significantly attenuated the positive inotropic effects on dF/dt of increased rest intervals (PRP; post-rest potentiation) or increased stimulation frequencies. Attenuation was to 98+/-6% at 1 Hz, and 73+/-8 and 67+/-8% for 30 and 60 sec PRP, respectively, and 73+/-3 and 63 +/-3% at 2 and 3 Hz, respectively, for 88 microM Daun (P<0.05, vs pre-drug baseline values, mean +/- SEM). These effects of Daun were similar to those of caffeine (2 mM), an agent well known to deplete cardiac SR calcium. We also examined the effect of Daun in isolated neonatal rabbit atria, which lack mature, functional SR; Daun did not alter the force-frequency relationship or PRP contractions. Additional studies in Ca(2+)-loaded SR microsomes indicated that both Daun and 5-ID opened Ca(2+) release channels, with Daun being 20-fold more potent than 5-ID in this respect. Neither anthracycline, however, induced free-radical formation in SR preparations (assayed via nicking of supercoiled DNA) prior to stimulating Ca(2+) release. Thus, our results indicate that Daun impairs myocardial contractility in vitro by selectively interfering with SR function; the quinone moiety of Daun appears to mediate this cardiotoxic effect, acting through a mechanism that does not involve free radicals.[Abstract] [Full Text] [Related] [New Search]