These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cataract-free interval and severity of cataract after total body irradiation and bone marrow transplantation: influence of treatment parameters.
    Author: van Kempen-Harteveld ML, Struikmans H, Kal HB, van der Tweel I, Mourits MP, Verdonck LF, Schipper J, Battermann JJ.
    Journal: Int J Radiat Oncol Biol Phys; 2000 Oct 01; 48(3):807-15. PubMed ID: 11020578.
    Abstract:
    PURPOSE: To determine prospectively the cataract-free interval (latency time) after total body irradiation (TBI) and bone marrow transplantation (BMT) and to assess accurately the final severity of the cataract. METHODS AND MATERIALS: Ninety-three of the patients who received TBI as a part of their conditioning regimen for BMT between 1982 and 1995 were followed with respect to cataract formation. Included were only patients who had a follow-up period of at least 23 months. TBI was applied in one fraction of 8 Gy or two fractions of 5 or 6 Gy. Cataract-free period was assessed and in 56 patients, who could be followed until stabilization of the cataract had occurred, final severity of the cataract was determined using a classification system. With respect to final severity, two groups were analyzed: subclinical low-grade cataract and high-grade cataract. Cataract-free period and final severity were determined with respect to type of transplantation, TBI dose, and posttransplant variables such as graft versus host disease (GVHD) and steroid treatment. RESULTS: Cataract incidence of the analyzed patients was 89%. Median time to develop a cataract was 58 months for autologous transplanted patients. For allogeneic transplanted patients treated or not treated with steroids, median times were 33 and 46 months, respectively. Final severity was not significantly different for autologous or allogeneic patients. In allogeneic patients, however, final severity was significantly different for patients who had or had not been treated with steroids for GVHD: 93% versus 35% high-grade cataract, respectively. Final severity was also different for patients receiving 1 x 8 or 2 x 5 Gy TBI, from patients receiving 2 x 6 Gy as conditioning therapy: 33% versus 79% high-grade cataract, respectively. The group of patients receiving 2 x 6 Gy comprised, however, more patients with steroid treatment for GVHD. So the high percentage of high-grade cataract in the 2 x 6 Gy group might also have been caused to a significant extent by steroid treatment. The percentage of patients with high-grade cataract was lower in allogeneic transplanted patients without steroid treatment for GVHD than in autologous transplanted patients: 35% versus 48%. An explanation for this could be pretransplant therapy containing high-dose steroids. CONCLUSIONS: After high-dose-rate TBI in one or two fractions, steroids for GVHD influence latency time of a cataract and are of great importance for the severity the cataract finally attains. Although a cataract will develop in all patients, a clinically important high-grade cataract is relatively infrequent in patients not treated with steroids. Pretransplant therapy might also influence final severity of cataract.
    [Abstract] [Full Text] [Related] [New Search]