These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Extracellular pH, Ca(2+) influx, and response of vascular smooth muscle cells to 5-hydroxytryptamine.
    Author: Nazarov V, Aquino-DeJesus J, Apkon M.
    Journal: Stroke; 2000 Oct; 31(10):2500-7. PubMed ID: 11022085.
    Abstract:
    BACKGROUND AND PURPOSE: Cerebral vascular smooth muscle cells (VSMCs) contract on extracellular pH (pH(o)) increases and relax on pH(o) decreases. These changes in tone are believed to result from changes in [Ca(2+)](i), although the responsible mechanisms are not fully understood. VSMCs also contract in response to 5-hydroxytryptamine (5-HT), which increases [Ca(2+)](i) via both Ca(2+) release and influx. We hypothesized that examining effects of pH(o) decreases on 5-HT-induced [Ca(2+)](i) changes would allow us to identify mechanisms whereby pH(o) influences tone. Accordingly, we compared [Ca(2+)](i) increases in cerebral VSMCs, evoked by 5-HT, with increases evoked by increased pH(o) and examined 5-HT-dependent [Ca(2+)](i) increases at normal and decreased pH(o). METHODS: We monitored [Ca(2+)](i,), using the Ca(2+)-sensitive dye fura 2, in cultured rat cerebral VSMCs obtained by enzymatic digestion of middle cerebral arteries and their branches (passages 1 to 3) grown on glass coverslips and superfused with physiological saline. RESULTS: Increasing pH(o) from 7.3 to 7.8 increased [Ca(2+)](i), and these increases were prevented in Ca(2+)-free solutions. Decreasing pH(o) from 7.3 to 6.9 did not alter [Ca(2+)](i) unless [Ca(2+)](i) was first raised by treatment with 5-HT (10 micromol/L). 5-HT resulted in biphasic [Ca(2+)](i) increases characterized by transient peaks blocked by the Ca(2+)-ATPase inhibitor thapsigargin (10 nmol/L) and prolonged plateaus blocked by the Ca(2+) channel blocker Ni(2+) (1 mmol/L). Acidification did not alter the transient peaks but significantly reduced 5-HT-induced Ca(2+) influx. CONCLUSIONS: We conclude that increasing pH(o) induces Ca(2+) influx in rat cerebral VSMCs and decreasing pH(o) inhibits 5-HT-stimulated Ca(2+) entry but not intracellular Ca(2+) release.
    [Abstract] [Full Text] [Related] [New Search]