These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impaired gamma interferon responses against parvovirus B19 by recently infected children. Author: Corcoran A, Doyle S, Waldron D, Nicholson A, Mahon BP. Journal: J Virol; 2000 Nov; 74(21):9903-10. PubMed ID: 11024117. Abstract: Parvovirus B19 is the causative agent of "fifth disease" of childhood. It has been implicated in a variety of conditions, including unsuccessful pregnancy and rheumatoid arthritis, and is a potential contaminant of blood products. There has been little study of immunity to parvovirus B19, and the exact nature of the protective humoral and cell-mediated immune response is unclear. Immune responses to purified virus capsid proteins, VP1 and VP2, were examined from a cohort of recently infected children and compared with responses from long-term convalescent volunteers. The results demonstrate that antibody reactivity is primarily maintained against conformational epitopes in VP1 and VP2. The unique region of VP1 appears to be a major target for cell-mediated immune responses, particularly in recently infected individuals. We confirm that antibody reactivity against linear epitopes of VP2 is lost shortly after infection but find no evidence of the proposed phenotypic switch in either the subclass of parvovirus B19-specific antibody or the pattern of cytokine production by antigen-specific T cells. The dominant subclass of specific antibody detected from both children and adults was immunoglobulin G1. No evidence was found for interleukin 4 (IL-4) or IL-5 production by isolated lymphocytes from children or adults. In contrast, lymphocytes from convalescent adults produced a typical type 1 response associated with high levels of IL-2 and gamma interferon (IFN-gamma). However, we observed a significant (P<0.001) deficit in the production of IFN-gamma in response to VP1 or VP2 from lymphocytes isolated from children. Taken together, these results imply that future parvovirus B19 vaccines designed for children will require the use of conformationally preserved capsid proteins incorporating Th1 driving adjuvants. Furthermore, these data suggest novel mechanisms whereby parvovirus B19 infection may contribute to rheumatoid arthritis and unsuccessful pregnancy.[Abstract] [Full Text] [Related] [New Search]