These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exhaustive mutagenesis in silico: multicoordinate free energy calculations on proteins and peptides.
    Author: Pitera JW, Kollman PA.
    Journal: Proteins; 2000 Nov 15; 41(3):385-97. PubMed ID: 11025549.
    Abstract:
    We have extended and applied a multicoordinate free energy method, chemical Monte Carlo/Molecular Dynamics (CMC/MD), to calculate the relative free energies of different amino acid side-chains. CMC/MD allows the calculation of the relative free energies for many chemical species from a single free energy calculation. We have previously shown its utility in host:guest chemistry (Pitera and Kollman, J Am Chem Soc 1998;120:7557-7567)1 and ligand design (Eriksson et al., J Med Chem 1999;42:868-881)2, and here demonstrate its utility in calculations of amino acid properties and protein stability. We first study the relative solvation free energies of N-methylated and acetylated alanine, valine, and serine amino acids. With careful inclusion of rotameric states, internal energies, and both the solution and vacuum states of the calculation, we calculate relative solvation free energies in good agreement with thermodynamic integration (TI) calculations. Interestingly, we find that a significant amount of the unfavorable solvation of valine seen in prior work (Sun et al., J Am Chem Soc 1992;114:6798-6801)3 is caused by restraining the backbone in an extended conformation. In contrast, the solvation free energy of serine is calculated to be less favorable than expected from experiment, due to the formation of a favorable intramolecular hydrogen bond in the vacuum state. These monomer calculations emphasize the need to accurately consider all significant conformations of flexible molecules in free energy calculations. This development of the CMC/MD method paves the way for computations of protein stability analogous to the biochemical technique of "exhaustive mutagenesis." We have carried out just such a calculation at position 133 of T4 lysozyme, where we use CMC/MD to calculate the relative stability of eight different side-chain mutants in a single free energy calculation. Our T4 calculations show good agreement with the prior free energy calculations of Veenstra et al. (Prot Eng 1997;10:789-807)4 and excellent agreement with the experiments of Mendel et al. (Science 1992;256:1798-1802).
    [Abstract] [Full Text] [Related] [New Search]