These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glycosylated salivary alpha-amylases are capable of maltotriose hydrolysis and glucose formation.
    Author: Koyama I, Komine S, Yakushijin M, Hokari S, Komoda T.
    Journal: Comp Biochem Physiol B Biochem Mol Biol; 2000 Aug; 126(4):553-60. PubMed ID: 11026667.
    Abstract:
    The physiological and/or clinical significance of sugar chains in human salivary alpha-amylase was investigated in terms of substrate-specificity for synthesized malto-oligosaccharides. Glycosylated and non-glycosylated alpha-amylases were prepared on a Sephacryl S-200 column, in which the amylases were separated into four fractions from the different affinities for Sephacryl: fraction I, amylases bearing sugar chains with sialic acid; fraction II, amylases bearing sugar chains without sialic acid; fractions III and IV, non-glycosylated amylases. These were classified according to the differences in their affinities for lectins, molecular sizes and isoelectric points. The inhibitory effect of maltotriose (G3) on starch hydrolysis of the amylase fraction, suggests that starch and G3 can be the substrate for glycosylated amylase, and that the glycosylated amylases are capable of G3 hydrolysis for conversion into maltose and glucose. Using malto-oligosaccharides, G3, G4, G5 and G7, as substrates, the substrate-specificities and G3/G5 ratio of amylase activities in the four fractions were examined. Maltopentaose, G5, is routinely used as a substrate for alpha-amylase, and then we assumed that both glycosylated and non-glycosylated amylases react with G5. Moreover, the results indicate that the glycosylated amylases clearly had a higher capacity for G3 hydrolysis than the non-glycosylated amylases, although no substrate preference of either type of amylase was observed among G4, G5 and G7. Glycosylated amylases have the capacity for glucose formation from malto-oligosaccharides.
    [Abstract] [Full Text] [Related] [New Search]