These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bradykinin stimulates IL-6 and IL-8 production by human lung fibroblasts through ERK- and p38 MAPK-dependent mechanisms. Author: Hayashi R, Yamashita N, Matsui S, Fujita T, Araya J, Sassa K, Arai N, Yoshida Y, Kashii T, Maruyama M, Sugiyama E, Kobayashi M. Journal: Eur Respir J; 2000 Sep; 16(3):452-8. PubMed ID: 11028659. Abstract: Bradykinin (BK) is a major kinin with well-documented pharmacological properties including vascular leakage and induction of a variety of cytokines. However, the intracellular signalling mechanisms by which BK induced proinflammatory cytokine production have not been fully elucidated. This study investigated the role of the extracellular signal-regulated protein kinase 1/2 (ERK 1/2) and p38 mitogen-activated protein kinase (p38 MAPK) in the BK-induced interleukin (IL)-6 and IL-8 production by human lung fibroblasts. Lung fibroblasts were stimulated with BK in the presence or in the absence of PD98059, a specific MAPK/ERK kinase-1 inhibitor, or SB203580, a specific p38 MAPK inhibitor, and IL-6 or IL-8 production and their gene expression was examined. BK-induced ERK 1/2 or p38 MAPK phosphorylation was also analysed by Western blot analysis. BK at nanomolar concentrations stimulated lung fibroblasts to produce IL-6 and IL-8 along with increased ERK 1/2 and p38 MAPK phosphorylation. BK-induced IL-6 and IL-8 synthesis was inhibited by a B2-type BK receptor antagonist. Furthermore, PD98059 or SB203580 significantly suppressed BK-induced IL-6 and IL-8 production and their gene expression. These results indicate that bradykinin-induced interleukin-6 and interleukin-8 production are at least partly mediated through the extracellular signal-related protein kinase 1/2 and p38 mitogen-activated protein kinase pathway-dependent activation in human lung fibroblasts, and suggest that bradykinin appears to be involved in the inflammatory reaction leading to acute lung injury through stimulating interleukin-6 and interleukin-8 production by lung fibroblasts.[Abstract] [Full Text] [Related] [New Search]