These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Voltage dependence of L-arginine transport by hCAT-2A and hCAT-2B expressed in oocytes from Xenopus laevis.
    Author: Nawrath H, Wegener JW, Rupp J, Habermeier A, Closs EI.
    Journal: Am J Physiol Cell Physiol; 2000 Nov; 279(5):C1336-44. PubMed ID: 11029280.
    Abstract:
    Membrane potential and currents were investigated with the two-electrode voltage-clamp technique in Xenopus laevis oocytes expressing hCAT-2A or hCAT-2B, the splice variants of the human cationic amino acid transporter hCAT-2. Both hCAT-2A- and hCAT-2B-expressing oocytes exhibited a negative extracellular L-arginine concentration ([L-Arg](o))-sensitive membrane potential, additive to the K(+) diffusion potential, when cells were incubated in Leibovitz medium (containing 1.45 mM L-Arg and 0.25 mM L-lysine). The two carrier proteins produced inward and outward currents, which were dependent on the L-Arg gradient and membrane potential. Ion substitution experiments showed that the hCAT-induced currents were independent of external Na(+), K(+), Ca(2+), or Mg(2+). The apparent Michaelis-Menten constant values at -60 mV, obtained from plots of L-Arg-induced currents against [L-Arg](o), were 0.97 and 0.13 mM in oocytes expressing hCAT-2A and hCAT-2B, respectively; maximal currents amounted to -194 +/- 8 and -84 +/- 2 nA, respectively. At saturating [L-Arg](o), the current-voltage relationships of hCAT-2A-expressing oocytes became steeper, yielding an additional conductance up to 2 microS/oocyte, whereas those of hCAT-2B-expressing oocytes were simply shifted to the right, resulting in voltage-independent difference currents. The distinct electrochemical properties of the two isoforms of hCAT-2 are assumed to contribute differentially to the membrane transport and the maintenance of cationic amino acids in various tissues.
    [Abstract] [Full Text] [Related] [New Search]