These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Roles of ionic residues of the C1 domain in protein kinase C-alpha activation and the origin of phosphatidylserine specificity. Author: Bittova L, Stahelin RV, Cho W. Journal: J Biol Chem; 2001 Feb 09; 276(6):4218-26. PubMed ID: 11029472. Abstract: On the basis of extensive structure-function studies of protein kinase C-alpha (PKC-alpha), we have proposed an activation mechanism for conventional PKCs in which the C2 domain and the C1 domain interact sequentially with membranes (Medkova, M., and Cho, W. (1999) J. Biol. Chem. 274, 19852-19861). To further elucidate the interactions between the C1 and C2 domains during PKC activation and the origin of phosphatidylserine specificity, we mutated several charged residues in two C1 domains (C1a and C1b) of PKC-alpha. We then measured the membrane binding affinities, activities, and monolayer penetration of these mutants. Results indicate that cationic residues of the C1a domain, most notably Arg(77), interact nonspecifically with anionic phospholipids prior to the membrane penetration of hydrophobic residues. The mutation of a single aspartate (Asp(55)) in the C1a domain to Ala or Lys resulted in dramatically reduced phosphatidylserine specificity in vesicle binding, activity, and monolayer penetration. In particular, D55A showed much higher vesicle affinity, activity, and monolayer penetration power than wild type under nonactivating conditions, i.e. with phosphatidylglycerol and in the absence of Ca(2+), indicating that Asp(55) is involved in the tethering of the C1a domain to another part of PKC-alpha, which keeps it in an inactive conformation at the resting state. Based on these results, we propose a refined model for the activation of conventional PKC, in which phosphatidylserine specifically disrupts the C1a domain tethering by competing with Asp(55), which then leads to membrane penetration and diacylglycerol binding of the C1a domain and PKC activation.[Abstract] [Full Text] [Related] [New Search]