These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Degradation of the type I inositol 1,4,5-trisphosphate receptor by caspase-3 in SH-SY5Y neuroblastoma cells undergoing apoptosis.
    Author: Haug LS, Walaas SI, Ostvold AC.
    Journal: J Neurochem; 2000 Nov; 75(5):1852-61. PubMed ID: 11032874.
    Abstract:
    The type I inositol 1,4,5-trisphosphate (IP(3)) receptor is selectively down-regulated in several neurodegenerative diseases, including Alzheimer's disease, Huntington's chorea, and ischemia, all conditions in which apoptotic neuronal loss occurs. In the present study, we used a neuronal cell line, human neuroblastoma SH-SY5Y cells, to investigate whether the levels of IP(3) receptor are changed during apoptosis in these cells. Following induction of apoptosis by staurosporine, the immunoreactivity of the type I IP(3) receptor in microsome preparations from SH-SY5Y cells was reduced within 2 h, with a further reduction during subsequent hours. Immunoblot analyses, using antibodies to poly(ADP-ribose) polymerase and spectrin breakdown products, revealed proteolysis of these caspase-3 substrates within 3 h, confirming that IP(3) receptor cleavage is an early consequence of apoptosis. In vitro incubation of SH-SY5Y microsomes or immunopurified IP(3) receptor from rat cerebellum with recombinant caspase-3 led to generation of immunoreactive breakdown products similar to those observed in intact cells, suggesting that the type I IP(3) receptor is a potential substrate for caspase-3. Preincubation of the neuroblastoma cells with the caspase-3 inhibitor Z-Asp-Glu-Val-Asp-fluoromethyl ketone prevented IP(3) receptor degradation. These results show that the type I IP(3) receptor is a substrate for caspase-3 in neuronal cells and indicate that apoptotic down-regulation of IP(3) receptor levels may contribute to the pathology of neurodegenerative conditions.
    [Abstract] [Full Text] [Related] [New Search]