These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of amelogenin on the transforming surface microstructures of Bioglass in a calcifying solution.
    Author: Wen HB, Moradian-Oldak J, Zhong JP, Greenspan DC, Fincham AG.
    Journal: J Biomed Mater Res; 2000 Dec 15; 52(4):762-73. PubMed ID: 11033560.
    Abstract:
    Topographies of a bioactive glass (45S5 type Bioglass(R)) during 0-4 h of immersion in a supersaturated calcifying solution (SCS) and the SCS containing recombinant porcine amelogenin rP172 (SCS(rP172)) were observed by atomic force microscopy. Other techniques including X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, and transmission electron microscopy were used for some complementary microstructural investigations. The smooth Bioglass surface changed to be very rough after 0.5 h of SCS immersion because of glass network dissolution. Spherical silica-gel particles with diameters of 150-300 nm consisting of substructures of 20-60 nm across had formed on the sample surfaces after 1 h of SCS immersion. The chemisorption of amorphous calcium phosphate and crystallization of nanophase apatite were seen to occur epitaxially on the silica-gel structures during 1-4 h of SCS immersion. During the first 0.5 h of SCS(rP172) immersion, more than 95% of rP172 protein in solution was adsorbed onto the sample surfaces and generated spherical assemblies of 10-60 nm diameters. During 0.5-4 h of SCS(rP172) immersion, the protein assemblies of rP172 remarkably induced the formation of orientated silica-gel plates (approximately 100-nm wide and 50-nm thick) and subsequently of long and thin apatite needle crystals. The recombinant amelogenin rP172-modulated apatite crystals resembled those formed in the early stage of tooth enamel biomineralization, suggesting the functional roles of amelogenins during the oriented growth of enamel crystallites and a great potential for amelogenins in applications designed to fabricate enamel-like calcium phosphate biomaterials.
    [Abstract] [Full Text] [Related] [New Search]