These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of dendritic epidermal T cells with a skewed diversity of gamma delta TCRs in V delta 1-deficient mice.
    Author: Hara H, Kishihara K, Matsuzaki G, Takimoto H, Tsukiyama T, Tigelaar RE, Nomoto K.
    Journal: J Immunol; 2000 Oct 01; 165(7):3695-705. PubMed ID: 11034374.
    Abstract:
    One of the most intriguing features of gammadelta T cells that reside in murine epithelia is the association of a specific Vgamma/Vdelta usage with each epithelial tissue. Dendritic epidermal T cells (DETCs) in the murine epidermis, are predominantly derived from the "first wave" Vgamma5+ fetal thymocytes and overwhelmingly express the canonical Vgamma5/Vdelta1-TCRs lacking junctional diversity. Targeted disruption of the Vdelta1 gene resulted in a markedly impaired development of Vgamma5+ fetal thymocytes as precursors of DETCs; however, gammadeltaTCR+ DETCs with a typical dendritic morphology were observed in Vdelta1-/- mice and their cell densities in the epidermis were slightly lower than those in Vdelta1+/- epidermis. Moreover, the Vdelta1-deficient DETCs were functionally competent in their ability to up-regulate cytokines and keratinocyte growth factor-expression in response to keratinocytes. Vgamma5+ DETCs were predominant in the Vdelta1-/- epidermis, though Vgamma5- gammadeltaTCR+ DETCs were also detected. The Vgamma5+ DETCs showed a typical dendritic shape, gammadeltaTCR(high), and age-associated expansion in epidermis as observed in conventional DETCs of normal mice, whereas the Vgamma5- gammadeltaTCR+ DETCs showed a less dendritic shape, gammadeltaTCR(low), and no expansion in the epidermis, consistent with their immaturity. These results suggest that optimal DETC development does not require a particular Vgamma/Vdelta-chain usage but requires expression of a limited diversity of gammadeltaTCRs, which allow DETC precursors to mature and expand within the epidermal microenvironment.
    [Abstract] [Full Text] [Related] [New Search]