These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel calcium/calmodulin-regulated kinesin-like protein is highly conserved between monocots and dicots.
    Author: Abdel-Ghany SE, Reddy AS.
    Journal: DNA Cell Biol; 2000 Sep; 19(9):567-78. PubMed ID: 11034549.
    Abstract:
    Recently, a novel kinesin-like protein (KCBP) that is regulated by Ca2+/calmodulin was isolated from dicot plants. A homolog of KCBP has not been reported in monocots. To determine if this motor protein is present in phylogenetically divergent flowering plants, Arabidopsis KCBP cDNA was used as a probe to screen a genomic library of maize, an evolutionarily divergent species. This screening resulted in isolation of a KCBP homolog. Comparison of the predicted amino acid sequence of the KCBP from maize (ZmKCBP), a monocot, with the previously reported KCBP sequences from dicot species showed that the amino acid sequence, domain organization, and gene structure are highly conserved between monocots and dicots. The C-terminal region of ZmKCBP, containing the motor domain and the calmodulin-binding domain, and the N-terminal tail, with a myosin tail homology region (MyTH4) and talin-like region, showed strong sequence similarity to the KCBP homolog from dicots. However, the coiled-coil region is less conserved between monocots and dicots. The ZmKCBP gene contained 22 exons and 21 introns. The location of 19 of the 21 introns of ZmKCBP is also conserved. The ZmKCBP protein is encoded by a single gene and expressed in all tissues. Affinity-purified antibody to the calmodulin-binding domain of Arabidopsis KCBP detected a protein in both the soluble and the microsomal fractions. The C-terminal region of ZmKCBP, containing the motor and calmodulin-binding domains, bound calmodulin in the presence of calcium and failed to bind in the presence of EGTA. The ZmKCBP, along with other KCBPs from dicots, was grouped into a distinct group in the C-terminal subfamily of kinesin-like proteins. These data suggest that the KCBP is ubiquitous and highly conserved in all flowering plants and the origin of KCBP predated the divergence of monocots and dicots.
    [Abstract] [Full Text] [Related] [New Search]