These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evolution of the self-pollinating flower in Clarkia xantiana (Onagraceae). I. Size and development of floral organs.
    Author: Runions CJ, Geber MA.
    Journal: Am J Bot; 2000 Oct; 87(10):1439-51. PubMed ID: 11034919.
    Abstract:
    Clarkia xantiana has two subspecies that differ in breeding system: ssp. xantiana, which is outcrossing, and ssp. parviflora, which is self-fertilizing. Outcrossing is the ancestral breeding system for the genus Clarkia. Flowers of ssp. parviflora have characteristics commonly associated with selfing taxa: they are smaller and have little temporal and spatial separation between mature anthers and stigma (dichogamy and herkogamy, respectively). Flower morphology and development were studied in four populations of each subspecies to establish the developmental changes that occurred in the evolution of selfing. In particular, we sought to evaluate the hypothesis that the selfing flower may have arisen as a byproduct of selection for rapid maturation in the arid environment occupied by ssp. parviflora. This hypothesis predicts that development time should be reduced in spp. parviflora relative to ssp. xantiana. We also sought to compare the pattern of covariation of flower morphology and development between subspecies to that within subspecies. Similar within vs. between patterns of covariation could be indicative of developmental or functional constraints on the independent evolution of floral parts. In spite of significant variation among populations within subspecies, the subspecies clearly differ in flower morphology and development. All floral organs, except ovaries, are smaller in ssp. parviflora than in ssp. xantiana. The flower plastochron, the duration of flower development from bud initiation to anthesis, and the duration of protandry are all shorter in ssp. parviflora than in ssp. xantiana. Maximum relative growth rates are higher for all organs in ssp. parviflora than in ssp. xantiana. Thus, progenesis (i.e., via a reduction in development time) is combined with growth acceleration in the evolution of the selfing flower. Since reduced development time and growth acceleration both allow selfing flowers to mature earlier than outcrossing ones, selection for early maturation may have contributed to the evolution of the selfing flower form. The pattern of trait covariation differs within spp. parviflora relative to the patterns within spp. xantiana and between the two subspecies, suggesting that floral parts can and have evolved independently of one another.
    [Abstract] [Full Text] [Related] [New Search]