These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A caspase-3-like protease is involved in NF-kappaB activation induced by stimulation of N-methyl-D-aspartate receptors in rat striatum.
    Author: Qin Z, Wang Y, Chasea TN.
    Journal: Brain Res Mol Brain Res; 2000 Sep 15; 80(2):111-22. PubMed ID: 11038244.
    Abstract:
    Glutamate receptor stimulation reportedly activates NF-kappaB in vitro and in vivo, although underlying mechanisms remain to be elucidated. Here we evaluated the role of proteases in mediating N-methyl-D-aspartate (NMDA) receptor agonist-induced NF-kappaB activation and apoptosis in rat striatum. The intrastriatal infusion of quinolinic acid (QA, 60 nmol) had no effect on levels of NF-kappaB family proteins, including p65, p50, p52, c-Rel and Rel B. In contrast, QA decreased IkappaB-alpha protein levels by 60% (P<0. 05); other members of the IkappaB family, including IkappaB-beta, IkappaB-gamma, IkappaB-epsilon and Bcl-3, were not altered. The QA-stimulated degradation of IkappaB-alpha was completely blocked by the NMDA receptor antagonist MK-801. QA-induced IkappaB-alpha degradation and NF-kappaB activation were not affected by the proteasome inhibitor MG-132 (1-4 microg). On the other hand, the caspase-3 inhibitor Ac-DEVD.CHO (2-8 microgram) blocked QA-induced IkappaB-alpha degradation in a dose-dependent manner (P<0.05). Ac-DEVD.CHO (4 microgram) also substantially reduced QA-induced NF-kappaB activation (P<0.05), but had no effect on QA-induced AP-1 activation. Furthermore, Ac-DEVD.CHO, but not MG-132, dose-dependently attenuated QA-induced internucleosomal DNA fragmentation. These findings suggest that NF-kappaB activation by NMDA receptor stimulation involves IkappaB-alpha degradation by a caspase-3-like cysteine protease dependent mechanism. Caspase-3 thus appears to contribute to the excitotoxin-induced apoptosis in rat striatal neurons occurring at least partially as a consequence of NF-kappaB activation.
    [Abstract] [Full Text] [Related] [New Search]