These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Agonist binding and function at the human alpha(2A)-adrenoceptor: allosteric modulation by amilorides. Author: Leppik RA, Birdsall NJ. Journal: Mol Pharmacol; 2000 Nov; 58(5):1091-9. PubMed ID: 11040058. Abstract: It has been found previously that amilorides act via an allosteric site on the alpha(2A)-adrenergic receptor to strongly inhibit antagonist binding. In this study, allosteric modulation of agonist binding and function at the alpha(2A)-adrenergic receptor was explored. The dissociation rate of the agonist [(3)H]UK14304 from alpha(2A)-receptors was decreased by the amilorides in a concentration-dependent manner. This contrasts with the increases in (3)H-antagonist dissociation rate found previously. The agonist-amiloride analog interaction data could be fitted to equations derived from the ternary complex allosteric model. The calculated log affinities of the amilorides at the [(3)H]UK14304-occupied receptor increased with the size of the 5-N-alkyl side chain and ranged from 2.4 for amiloride to 4.2 for 5-(N,N-hexamethylene)-amiloride. The calculated negative cooperativities cover a narrow range, in sharp contrast to the broad range found for antagonist-amiloride analog interactions. The effects of the amilorides on the agonist actions of UK14304, epinephrine, and norepinephrine were explored using a [(35)S]GTPgammaS functional assay, and the parameters calculated for the cooperativities and affinities of the UK14304-amiloride analog interactions, using the equation derived from the ternary complex allosteric model, were in good agreement with those derived from the kinetic studies. Therefore both the binding and functional data provide further support for the existence of a well defined allosteric site on the human alpha(2A)-adrenergic receptor. The binding mode of the amilorides at the agonist-occupied and antagonist-occupied receptor differs markedly but, within each group, the structure of either the agonist or the antagonist examined has only a slight effect on the allosteric interactions.[Abstract] [Full Text] [Related] [New Search]