These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic control of oxidative phosphorylation and experimental models of defects. Author: Trounce I. Journal: Hum Reprod; 2000 Jul; 15 Suppl 2():18-27. PubMed ID: 11041510. Abstract: Energy in the form of ATP is continually produced by all cells for normal growth and function. Anaerobic glycolysis can provide enough ATP for some cells, but energetic cells such as cardiomyocytes and neurons require a more efficient ATP supply, which can only be provided by mitochondrial oxidative phosphorylation. Invented by bacteria that became symbiotically associated with other bacteria to form eukaryotic cells billions of years ago, oxidative phosphorylation carries with it a genetic legacy that is unique. The mitochondrial oxidative phosphorylation complexes are assembled from protein subunits encoded by both the mitochondrial genome (mtDNA) and the nuclear genome (nDNA, located in the chromosomes). The mtDNA is a remnant genome of the bacterial progenitor of mitochondria, and (unlike the biparental diploidy that characterizes the nuclear genome) is present in thousands of copies per cell, is replicated through life, and is inherited (cytoplasmically) only from the female parent. Oxidative phosphorylation comprises five multimeric enzyme complexes that act as a redox pathway, passing electrons from oxidizable intermediates produced by the metabolism of food to molecular oxygen in the mitochondrial matrix, while producing an electrochemical gradient by pumping protons into the intermembranal space. The proton (hydrogen ion) gradient across the inner mitochondrial membrane is used by the H+-transporting ATP synthase to produce ATP from ADP and inorganic phosphate, with the protons released into the mitochondrial matrix then combining with electronated oxygen to form water. Many of the details regarding the control of the synthesis of oxidative phosphorylation enzyme complexes remain to be elucidated. Transmitochondrial cell culture systems have been developed so that defective oxidative phosphorylation can be studied in a controlled nuclear background. Such systems may soon enable the development of mtDNA 'knockout' mice in order to better model mtDNA transmission and mitochondrial disease.[Abstract] [Full Text] [Related] [New Search]