These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The conserved C-terminus of the citrate (CitP) and malate (MleP) transporters of lactic acid bacteria is involved in substrate recognition. Author: Bandell M, Lolkema JS. Journal: Biochemistry; 2000 Oct 24; 39(42):13059-67. PubMed ID: 11041872. Abstract: The membrane potential-generating transporters CitP of Leuconostoc mesenteroides and MleP of Lactococcus lactis are homologous proteins with 48% identical residues that catalyze citrate-lactate and malate-lactate exchange, respectively. The two transporters are highly specific for substrates containing a 2-hydroxycarboxylate motif (HO-CR(2)-COO(-)) in which substitutions of the R groups are tolerated well. Differences in substrate specificity between MleP and CitP are based on subtle changes in the interaction of the protein with the R groups affecting both binding and translocation properties. The conserved, 46-residue long C-terminal region of the transporters containing the C-terminal putative transmembrane segment XI was investigated for its role in substrate recognition by constructing chimeric transporters. Replacement of the C-terminal region of MleP with that of CitP and vice versa did not alter the exchange kinetics with the substrates malate and citrate, indicating that the main interactions between the proteins and di- and tricarboxylate substrates were not altered. In contrast, the interaction of the proteins with the monocarboxylate substrates mandelate and 2-hydroxyisovalerate changed in a complementary manner. The affinity of CitP for the S-enantiomers of these substrates was at least 1 order of magnitude lower than observed for MleP. Introduction of the C-terminal residues of MleP in CitP resulted in a higher affinity and vice versa. Interchanging the C-termini had a more complicated effect on the R-enantiomers, affecting different kinetic parameters with different substrates, indicating multiple interactions of the R groups at this side of the binding pocket. It is suggested that the binding pocket is located between transmembrane segment XI and the other transmembrane segments of the transporters.[Abstract] [Full Text] [Related] [New Search]