These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Defining the requirements for peptide recognition in gene therapy-induced T cell tolerance. Author: Bagley J, Wu Y, Sachs DH, Iacomini J. Journal: J Immunol; 2000 Nov 01; 165(9):4842-7. PubMed ID: 11046007. Abstract: Expression of a retrovirally transduced MHC class I Ag, H-2K(b) (K(b)), in bone marrow-derived cells leads to specific prolongation of K(b) disparate skin grafts. To examine the extent to which peptides derived from K(b) contribute to the induction of tolerance, retroviruses carrying mutant K(b) genes designed to enter separate pathways of Ag presentation were constructed. Thymectomized and CD8 T cell-depleted mice that had been irradiated and reconstituted with bone marrow cells expressing a secreted form of K(b) showed prolongation of K(b) disparate skin graft survival. Skin graft prolongation was not observed when similar experiments were performed using mice that were not CD8 T cell depleted. This suggests that hyporesponsiveness can be induced in CD4 T cells, but not CD8 T cells by Ags presented via the exogenous pathway of Ag processing. Modest prolongation of skin allografts was observed in mice reconstituted with bone marrow cells transduced with retroviruses carrying a gene encoding a mutant K(b) molecule expressed only in the cytoplasm. Prolongation was also observed in similar experiments in mice that were thymectomized and CD4 T cell depleted following complete reconstitution, but not in mice that were reconstituted and then thymectomized and CD8 T cell depleted. Thus, hyporesponsiveness can be induced in a subset of CD8 T cells by recognition of peptides derived from K(b) through both the direct and indirect pathways of Ag recognition, while CD4 T cell hyporesponsiveness to MHC class I disparate grafts occurs only through the indirect pathway of Ag recognition.[Abstract] [Full Text] [Related] [New Search]