These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A unique loop in the DNA-binding crevice of bacteriophage T7 DNA polymerase influences primer utilization. Author: Chowdhury K, Tabor S, Richardson CC. Journal: Proc Natl Acad Sci U S A; 2000 Nov 07; 97(23):12469-74. PubMed ID: 11050188. Abstract: The three-dimensional structure of bacteriophage T7 DNA polymerase reveals the presence of a loop of 4 aa (residues 401-404) within the DNA-binding groove; this loop is not present in other members of the DNA polymerase I family. A genetically altered T7 DNA polymerase, T7 polDelta401-404, lacking these residues, has been characterized biochemically. The polymerase activity of T7 polDelta401-404 on primed M13 single-stranded DNA template is one-third of the wild-type enzyme and has a 3'-to-5' exonuclease activity indistinguishable from that of wild-type T7 DNA polymerase. T7 polDelta401-404 polymerizes nucleotides processively on a primed M13 single-stranded DNA template. T7 DNA polymerase cannot initiate de novo DNA synthesis; it requires tetraribonucleotides synthesized by the primase activity of the T7 gene 4 protein to serve as primers. T7 primase-dependent DNA synthesis on single-stranded DNA is 3- to 6-fold less with T7 polDelta401-404 compared with the wild-type enzyme. Furthermore, the altered polymerase is defective (10-fold) in its ability to use preformed tetraribonucleotides to initiate DNA synthesis in the presence of gene 4 protein. The location of the loop places it in precisely the position to interact with the tetraribonucleotide primer and, presumably, with the T7 gene 4 primase. Gene 4 protein also provides helicase activity for the replication of duplex DNA. T7 polDelta401-404 and T7 gene 4 protein catalyze strand-displacement DNA synthesis at nearly the same rate as does wild-type polymerase and T7 gene 4 protein, suggesting that the coupling of helicase and polymerase activities is unaffected.[Abstract] [Full Text] [Related] [New Search]