These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acute reversal of lipid-induced muscle insulin resistance is associated with rapid alteration in PKC-theta localization. Author: Bell KS, Schmitz-Peiffer C, Lim-Fraser M, Biden TJ, Cooney GJ, Kraegen EW. Journal: Am J Physiol Endocrinol Metab; 2000 Nov; 279(5):E1196-201. PubMed ID: 11052977. Abstract: Muscle insulin resistance in the chronic high-fat-fed rat is associated with increased membrane translocation and activation of the novel, lipid-responsive, protein kinase C (nPKC) isozymes PKC-theta and -epsilon. Surprisingly, fat-induced insulin resistance can be readily reversed by one high-glucose low-fat meal, but the underlying mechanism is unclear. Here, we have used this model to determine whether changes in the translocation of PKC-theta and -epsilon are associated with the acute reversal of insulin resistance. We measured cytosol and particulate PKC-alpha and nPKC-theta and -epsilon in muscle in control chow-fed Wistar rats (C) and 3-wk high-fat-fed rats with (HF-G) or without (HF-F) a single high-glucose meal. PKC-theta and -epsilon were translocated to the membrane in muscle of insulin-resistant HF-F rats. However, only membrane PKC-theta was reduced to the level of chow-fed controls when insulin resistance was reversed in HF-G rats [% PKC-theta at membrane, 23.0 +/- 4.4% (C); 39.7 +/- 3.4% (HF-F, P < 0.01 vs. C); 22.5 +/- 2.7% (HF-G, P < 0.01 vs. HF-F), by ANOVA]. We conclude that, although muscle localization of both PKC-epsilon and PKC-theta are influenced by chronic dietary lipid oversupply, PKC-epsilon and PKC-theta localization are differentially influenced by acute withdrawal of dietary lipid. These results provide further support for an association between PKC-theta muscle cellular localization and lipid-induced muscle insulin resistance and stress the labile nature of high-fat diet-induced insulin resistance in the rat.[Abstract] [Full Text] [Related] [New Search]